Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks
نویسندگان
چکیده
Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks.
منابع مشابه
Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance.
We design, fabricate and characterize a plasmonic honeycomb lattice absorber with almost perfect absorption at 1140 nm over a wide incident angle range. This absorber also possesses a narrow-band, angle- and polarization-dependent high-order resonance in the short-wavelength range, with a bandwidth of 19 nm and angle sensitivity of 3 nm per degree. The nature of this high-order absorption band ...
متن کاملOmnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings
Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of compl...
متن کاملLarge-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films
Nanostructured photonic materials enable control and manipulation of light at subwavelength scales and exhibit unique optical functionalities. In particular, plasmonic materials and metamaterials have been widely utilized to achieve spectral transmission, reflection, and absorption filters based on localized or delocalized resonances arising from the interaction of photons with nanostructured m...
متن کاملUtilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers
We numerically study the possibility of using atomically thin transition metal dichalcogenides (TMDs) for applications requiring broadband absorption in the visible range of the electromagnetic spectrum. We demonstrate that when monolayer TMDs are positioned into a finite-period of multilayer Bragg stack geometry, they make broadband, wide-angle, almost polarization-independent absorbers. In ou...
متن کاملMetallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range
We show theoretically that a finite two-dimensional square lattice of metallic cylinders in air can be designed to have almost 100% absorptance over a wide optical wavelength range and for a wide range of incidence angles. The broadband and wide-angle strong absorption is attributed to the presence of a large number of flat bands interacting with air bands and the greatly improved impedance mat...
متن کامل